On Topological Sequence Entropy and Chaotic Maps on Inverse Limit Spaces

نویسندگان

  • J. S. CANOVAS
  • Shihai Li
چکیده

The aim of this paper is to prove the following results: a continuous map f : [0, 1]→ [0, 1] is chaotic iff the shift map σf : lim ← ([0, 1], f)→ lim ← ([0, 1], f) is chaotic. However, this result fails, in general, for arbitrary compact metric spaces. σf : lim ← ([0, 1], f) → lim ← ([0, 1], f) is chaotic iff there exists an increasing sequence of positive integers A such that the topological sequence entropy hA(σf ) > 0. Finally, for any A there exists a chaotic continuous map fA : [0, 1] → [0, 1] such that hA(σfA ) = 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Convergent Topological Sequence Entropy Maps of the Circle

A continuous map f of the interval is chaotic iff there is an increasing of nonnegative integers T such that the topological sequence entropy of f relative to T, hT(f), is positive [4]. On the other hand, for any increasing sequence of nonnegative integers T there is a chaotic map f of the interval such that hT(f)=0 [7]. We prove that the same results hold for maps of the circle. We also prove ...

متن کامل

Topological sequence entropy for maps of the circle

A continuous map f of the interval is chaotic iff there is an increasing sequence of nonnegative integers T such that the topological sequence entropy of f relative to T , hT (f), is positive ([FS]). On the other hand, for any increasing sequence of nonnegative integers T there is a chaotic map f of the interval such that hT (f) = 0 ([H]). We prove that the same results hold for maps of the cir...

متن کامل

Entropy of a semigroup of maps from a set-valued view

In this paper, we introduce a new entropy-like invariant, named Hausdorff metric entropy, for finitely generated semigroups acting on compact metric spaces from a set-valued view and study its properties. We establish the relation between Hausdorff metric entropy and topological entropy of a semigroup defined by Bis. Some examples with positive or zero Hausdorff metric entropy are given. Moreov...

متن کامل

Topological Sequence Entropy for Maps of the Interval

A result by Franzová and Smı́tal shows that a continuous map of the interval into itself is chaotic if and only if its topological sequence entropy relative to a suitable increasing sequence of nonnegative integers is positive. In the present paper we prove that for any increasing sequence of nonnegative integers there exists a chaotic continuous map with zero topological sequence entropy relati...

متن کامل

ha o - dy n / 99 10 00 3 v 1 3 O ct 1 99 9 Chaotic Properties of Subshifts Generated by a Non - Periodic Recurrent Orbit July 1999 Xin -

The chaotic properties of some subshift maps are investigated. These subshifts are the orbit closures of certain non-periodic recurrent points of a shift map. We first provide a review of basic concepts for dynamics of continuous maps in metric spaces. These concepts include nonwandering point, recurrent point, eventually periodic point, scrambled set, sensitive dependence on initial conditions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999